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Overview 

The Bochs virtual PC consists of many pieces of hardware. At a bare minimum there are 

always a CPU, a PIT (Programmable Interval Timer), a PIC (Programmable Interrupt 

Controller), a DMA controller, some memory (this includes both RAM and BIOS ROMs), a 

video card (usually VGA), a keyboard port (also handles the mouse), an RTC with battery 

backed NVRAM, and some extra motherboard circuitry. 

There might also be a NE2K ethernet card, a PCI controller, a Sound Blaster 16, an IDE 

controller (+ harddisks/CDROM), a SCSI controller (+ harddisks), a floppy controller, an 

APIC .. 

There may also be more than one CPU. 

Most of these pieces of hardware have their own C++ class - and if bochs is configured to 

have more than one piece of a type of hardware, each will have its own object. 

The pieces of hardware communicates over a couple of buses with each other - some of the 

things that the buses carry are reads and writes in memory space, reads and writes in I/O 

space, interrupt requests, interrupt acknowledges, DMA requests, DMA acknowledges, and 

NMI request/acknowledge. How that is simulated is explained later FIXME. 

Other important pieces of the puzzle are: the options object (reads/writes configuration files, 

can be written to and queried while Bochs is running) and the GUI object. There are many 

different but compatible implementations of the GUI object, depending on whether you 

compile for X (Unix/Linux), Win32, Macintosh (two versions: one for Mac OS X and one for 

older OS's), Amiga, etc. 

And then there is the supporting cast: debugger, config menu, panic handler, disassembler, 

tracer, instrumentation. 

  



Weird macros and other mysteries 

Bochs has many macros with inscrutable names. One might even go as far as to say that 

bochs is macro infested. 

Some of them are gross speed hacks, to cover up the slow speed that C++ causes. Others 

paper over differences between the simulated PC configurations. 

Many of the macros exhibit the same problem as C++ does: too much stuff happens behind 

the programmer's back. More explicitness would be a big win. 

static methods hack 

C++ methods have an invisible parameter called this pointer - otherwise the method wouldn't 

know which object to operate on. In many cases in Bochs, there will only ever be one object - 

so this flexibility is unnecessary. There is a hack that can be enabled by #defining 

BX_USE_CPU_SMF to 1 in config.h that makes most methods static, which means they have 

a "special relationship" with the class they are declared in but apart from that are normal C 

functions with no hidden parameters. Of course they still need access to the internals of an 

object, so the single object of their class has a globally visible name that these functions use. 

It is all hidden with macros. 

Declaration of a class, from cpu/cpu.h: 

... 

#if BX_USE_CPU_SMF == 0 

// normal member functions.  This can ONLY be used within BX_CPU_C classes. 

// Anyone on the outside should use the BX_CPU macro (defined in bochs.h) 

// instead. 

#  define BX_CPU_THIS_PTR  this-> 

#  define BX_CPU_THIS      this 

#  define BX_SMF 

// with normal member functions, calling a member fn pointer looks like 

// object->*(fnptr)(arg, ...); 

// Since this is different from when SMF=1, encapsulate it in a macro. 

#  define BX_CPU_CALL_METHOD(func, args) \ 

            (this->*((BxExecutePtr_tR) (func))) args 

#  define BX_CPU_CALL_METHODR(func, args) \ 

            (this->*((BxResolvePtr_tR) (func))) args 

#else 

// static member functions.  With SMF, there is only one CPU by definition. 

#  define BX_CPU_THIS_PTR  BX_CPU(0)-> 

#  define BX_CPU_THIS      BX_CPU(0) 

#  define BX_SMF           static 

#  define BX_CPU_CALL_METHOD(func, args) \ 

            ((BxExecutePtr_tR) (func)) args 

#  define BX_CPU_CALL_METHODR(func, args) \ 

            ((BxResolvePtr_tR) (func)) args 

#endif 

 

... 

class BX_CPU_C : public logfunctions { 

public: 

    BX_CPU_C(unsigned id=0); 

   ~BX_CPU_C(); 

 

  BX_SMF void cpu_loop(void); 

... 

}; 



And cpu/cpu.cc: 

... 

#define NEED_CPU_REG_SHORTCUTS 1 

#include "bochs.h" 

#include "cpu.h" 

#define LOG_THIS BX_CPU_THIS_PTR 

... 

void BX_CPU_C::cpu_loop(void) 

{ 

#if BX_DEBUGGER 

  BX_CPU_THIS_PTR break_point = 0; 

  BX_CPU_THIS_PTR magic_break = 0; 

  BX_CPU_THIS_PTR stop_reason = STOP_NO_REASON; 

#endif 

 

  if (setjmp(BX_CPU_THIS_PTR jmp_buf_env)) { 

    // can get here only from exception function or VMEXIT 

... 

} 

Ugly, isn't it? If we use static methods, methods prefixed with BX_SMF are declared static 

and references to fields inside the object, which are prefixed with BX_CPU_THIS_PTR, will 

use the globally visible object bx_cpu. If we don't use static methods, BX_SMF evaluates to 

nothing and BX_CPU_THIS_PTR becomes this->. Making it evaluate to nothing would be 

a lot cleaner, but then the scoping rules would change slightly between the two bochs 

configurations, which would be a load of bugs just waiting to happen. 

Some classes use BX_SMF, others have their own version of the macro, like BX_VGA_SMF 

in the VGA emulation code. 

CPU and memory objects in UP/SMP configurations 

The CPU class is a special case of the above: if bochs is simulating a uni-processor machine 

then there is obviously only one bx_cpu_c object and the static methods trick can be used. If, 

on the other hand, bochs is simulating SMP machine then we can't use the trick. In a UP 

configuration, the CPU object is declared as bx_cpu. In an SMP configuration it will be an 

array of pointers to CPU objects (bx_cpu_array[]). 

Access of a CPU object often goes through the BX_CPU(x) macro, which either ignores the 

parameter and evaluates to &bx_cpu, or evaluates to bx_cpu_array[n], so the result will 

always be a pointer. 

If static methods are used then BX_CPU_THIS_PTR evaluates to BX_CPU(0)->. 

Ugly, isn't it? May be yes, but this simple optimization is actually one of the most efficient 

optimizations between all Bochs CPU emulation tricks. 

BX_DEBUG/BX_INFO/BX_ERROR/BX_PANIC -- logging 

macros 

go through a generic tracing mechanism. Can be switched individually on/off. Sometimes 

might eat a lot of CPU time – BX_DEBUG and BX_ERROR can be eliminated at 

compilation time using configure option. 



BX_TICK1, BX_TICKN(n), 

BX_TICK1_IF_SINGLE_PROCESSOR, BX_SYNC_TIME 

BX_TICK1_IF_SINGLE_PROCESSOR, only used in cpu.cc -- and only confuses the matter. It 

calls BX_TICK1 on a single-processor and nothing on SMP. 

 



Memory - An Introduction 

Both RAM and BIOS'es. BIOSes can be loaded individually. The CPU is accessing memory 

through direct host access (see Guest2Host TLB) or through access_read_physical() 

/access_write_physical() interface. The interface is the wrapper around 

BX_MEM_C::readPhysicalPage and BX_MEM_C::writePhysicalPage which handles the 

local APIC access. Each processor has its own local APIC which is memory mapped to a 

specific 4Kb physical page. The accesses to local APIC page go into local APIC device which 

is physically part of the CPU and not seen as access to the RAM.  

CPU masks the A20 bit by itself if required but memory also does the A20 masking for every 

memory access, this is mainly affects DMA access by devices which don’t care for A20 by 

themselves. 

Go over: 

1. ReadPhysicalMemory, WritePhysicalMemory 

2. SMM 

3. MONITOR/MWAIT 

4. Direct memory access getGuest2HostAddr 

5. Advanced: Swapping 

6. Register memory handlers (supported: read, write an execute handlers) 

 



The Basic CPU 

Simple CPU: no data caches! Does have TLBs and decoded instruction trace cache. 

Some real IA-32 implementations distinguish between TLBs for code and for data -- we don't. 

We save some time on having 1024 TLB entries, which is a lot more than almost all real 

CPUs have at the moment. 

Some of the things we have to emulate - The IA-32 

Real mode. Protected mode. Virtual 8086 mode. Long mode. 16/32-bit code, segments, 

instruction prefetch queue, TLBs, writes to memory can be executed "immediately" (makes 

things a bit harder for us later on), extraordinarily complex and varied instruction formats. 

Four different privilege levels, and then a system management mode or hardware 

virtualozation on top of that for some of the CPUs. Segment registers, capability of overriding 

the default segment register for the instruction, usually DS, but sometimes SS. Prefixes, 

address and operand size changes, tons of flags, tons of special cases about which registers 

can be used for what purpose. Totally free alignment of both code and data. Self modifying 

code support. Instructions can be one to sixteen bytes. IO Privilege level, IO privilege map, 

paging, vector ISA extensions. 

Yada yada, you get the picture... 



The main CPU loop 

In general, a CPU emulation loop looks very similar to that of a hardware non-pipelined CPU 

would have. Every emulated instruction passes through the same basic stages during the 

emulation. See the basic diagram. The Bochs is not very basic so the diagram will get more 

complicated with a time  

HANDLE ASYNCHRONOUS
EXTERNAL EVENTS

PREFETCH

Instruction
cache

lookup

FETCH AND DECODE
INSTRUCTION

DISPATCH (EXECUTE)

COMMIT

MISS

HIT

INSTRUMENT INSTRUCTION
(when needed)

 

Figure 1: Basic CPU emulation loop 

Decoding instructions is *HARD* 

On nicer processors, decoding instructions is an easy task. It's especially nice on the MIPS 

and the Alpha. On IA-32 it's just about as lousy as it can get :/ 

In order to reduce the complexity a bit, all the decoding of the operand fields is done first and 

then the instruction is executed by one of many hundred small methods that don't have to care 

(much) about their operands. 

bxInstruction_c 

All relevant instruction information stored in structure called bxInstruction_c. It has all fields 

like instruction length, dispatch function pointer, opcode, source and destination registers, 

immediate. 



 

Individual register index is stored in Bit8u variable. Can't pack two registers to same variable, 

4 bits is already not enough for a register. We have 16 registers in x86-64 mode, RIP and 

NULL register. 

 

The sizeof(bxInstruction_c) == 32 on 32-bit architectures and it is even more on 64-bit host. 

Too much, could be reduced to 16 bytes. This has real performance behind it. 

 

Every instruction is emulated by or two functions. All common and performance critical 

opcodes are emulated within single function handler. For less critical and more complex 

instructions, like LOAD+OP there might be two handler functions, one for LOAD and 

another for the OP. Pointers to both handler functions also stored in the bxInstruction_c 

(execute and execute2). The execute2 is directly called by execute. 

FetchDecode 

Decoding is done with table-based decoder. It is not very optimal. With the time tables grew 

too much and became too complicated for understanding. Looking up decoder tables can be 

optimized for space – should help to reduce decoder host cache miss rate. 

How exceptions are implemented? 

All instructions restartable from the register state + bxInstruction_c. Never possible to 

generate exception /after/ changing the visible state except for RIP (and in some cases RSP) 

registers. 

The CPU loop sets up return point using setjmp(), exception will call longjmp() and appear at 

the beginning of CPU loop. 

 



Optimizations for performance 

These and other Bochs optimizations were presented in 1st AMAS-BT workshop during 

ISCA-35 in Beijing by Stanislav Shwartsman and Darek Mihocka. The paper “Virtualization 

without direct execution - designing a portable VM” and presentation foils could be 

downloaded from Bochs website. 

Guest –to-Host TLB 

Similar to all hardware x86 processors Bochs uses TLB to cache linear to physical address 

translations. Bochs TLB is organized as direct mapped cache which can hold up to 1024 4K 

pages, so it easy to find a translation for a linear address using just single memory access and 

a comparison. 

Bochs TLB entry: 

typedef struct { 

    bx_address lpf;          // linear page frame 

    bx_phy_address ppf;     // physical page frame 

    bx_hostpageaddr_t hostPageAddr;  // direct host pointer for efficient memory access 

    Bit32u accessBits;   // access control bits 

    Bit32u lpf_mask;         // linear address mask of the page size 

} bx_TLB_entry; 

 

 The lpf or a Linear Page Frame is the tag of the TLB cache, all other fields are the TLB 

data that required for correctness and used on almost every memory access. The lpf 

address is always 4K aligned. 

 

 The ppf or a Physical Page Frame is a emulated physical address corresponding to the lpf 

and it is also always 4K aligned. 

 

 The lpf_mask field is required for x86 emulation correctness. The x86 architecture allows 

allocating of pages >4K (with 2M, 4M or even 1Gb per page). In hardware processors 

usually there are several TLBs, a separate TLB for each possible page size. Bochs 

automatically fractures all large pages to the 4K chunks and caches only fractured 4K 

pages. The 4K entries in the Bochs TLB are really parts of the architectural large pages 

and should be handled accordingly.  

 

For example when INVLPG instruction is executed for a large page, all chunks of the 

large page have to be invalidated from the Bochs TLB. The lpf_mask field holds a 

bitmask to remember a size of architectural page that the TLB entry belongs to. For 4K 

pages it will be simply 0xfff, for 2M – 0x1fffff and etc. Bochs TLB entry has to be 

invalidated if INVLPG linear address matches TLB entry with lpf_mask. 

 

 The hostPageAddr is the direct pointer to the Bochs’ host memory where emulated 

physical address page ppf can be found. The pointer is also 4K aligned. In most of the 

cases it is possible to calculate direct pointer hostPageAddr and access directly the 

Bochs’ host memory instead of calling expensive BX_MEM_C::writePhysicalPage or 

BX_MEM_C::readPhysicalPage. 

 



The direct pointer is allocated by BX_MEM_C::getHostMemAddr function. If it returns 

zero, it means that a pointer to the host space could not be generated, likely because 

that page of memory is not standard memory (it might be memory mapped IO, ROM, 

etc). Consult BX_MEM_C::getHostMemAddr for complete list of reason to veto direct 

host operations. 

 

 The accessBits is used for a very efficient paging permissions check. The goal is to be 

able, using only the current privilege and access type, to determine if the page tables 

allow the access to occur or at least should rewalk the page tables.  On the first read 

access, permissions are set to only read, so a rewalk is necessary when a subsequent write 

fails the tests. This allows for the dirty bit to be set properly, but for the test to be 

efficient.  Note that the CR0.WP flag is not present. The values in the following flags is 

based on the current CR0.WP value, necessitating a TLB flush when CR0.WP changes. 

 

The TLB access permissions checks are: 

 

AccessOK = (accessBits & ((E<<2) | (W<<1) | U)) == 0 

 

E: 1=Execute, 0=Data 

W: 1=Write, 0=Read 

U: 1=CPL3, 0=CPL0-2 

 

Thus for reads, it is: 

AccessOK = (accessBits & U) == 0 

for writes: 

AccessOK = (accessBits & (0x2 | U)) == 0 

and for code fetches: 

AccessOK = (accessBits & (0x4 | U)) == 0 

 

Note that the TLB should have TLB_NoHostPtr bit set in the lpf[11] when direct access 

through host pointer is NOT allowed for the page. A memory operation asking for a direct 

access through host pointer does not have TLB_NoHostPtr bit set in its lpf (which is 4K 

always aligned) and thus will get TLB miss result when the direct access is not allowed. 

A memory operation that do not care for a direct access to the memory through host pointer 

should implicitly clear lpf[11] bit in the TLB before comparison with memory access lpf. 

 

Guest –to-Host TLB invalidation 

The Bochs’ guest to host TLB has to be invalidated in all the cases mentioned in Intel 

Software Development Manual: 

 

 Flush all TLB entries when any of CR0.PE/CR0.PG/CR0.WP are modified. 

 Flush all non-global TLB entries on any write to CR3 register 

 Flush all TLB entries when any of CR4.PAE, CR4.PSE, CR4.PGE, CR4.PCIDE or 

CR4.SMEP are modified. 

 What about EFER.NXE ? 

 

and also in some extra Bochs’ specific cases: 

 

 Write to MSR_APICBASE flush the TLB. 

It is possible that the TLB had an entry pointing to the new APIC location. 



 Write to DR0-DR3 register invalidates all pages that collide with the new DR register 

value from the TLB. 

 Write to DR7 register flush the TLB. 

Instead we could invalidate all pages that collide with the DR0-DR3 values but 

flushing of the whole TLB simply faster. 

 

Code "Prefetching" 

Instruction fetch – might be it sounds simple but in fact the CPU has to perform a lot of 

complicated operations before from current instruction pointer (EIP) it can obtain the actual 

instruction bytes. 

The fetch is a virtual memory access and must follow all the rules of a regular memory 

access. The EIP has to be checked for segment limit and segment permissions (in 64-bit mode 

for canonical) and translated to physical address through page tables, paging execution 

permissions need to be checked as well. With the physical address need to access the memory 

and bring the instruction bytes. 

Of course we don't want to do all of this for every instruction. 

Might be only once in 4-Kb page … 

We would like to keep a host pointer to the current 4Kb page that instructions being fetched 

from. Thus if we know to translate quickly from EIP to the offset in that page we can save the 

expensive walk to the memory object. The trick is to keep a pre-calculated value 

(eipPageBias) which gonna help us to perform the translation. 

Skip the following part if you believe in pure magic and don't like dirty math. 

So we have the EIP and want to have the offset inside the 4-Kb physical page instead. In 

better architectures (not like x86) we would take 12 LSB of the EIP and it would be enough. 

But in x86 the EIP is not necessary aligned with page because of segment base which is not 

necessary 4-Kb aligned. After taking the segment base into account we get the LIP or linear 

EIP. 

LIP := EIP + CS.base 

The code is located in the linear page address linPageBase which is translated to the physical 

address phyPageBase. 

So we have: 

LIP := linPageBase + pageOffset = EIP + CS.base 

pageOffset = EIP + CS.base – linPageBase 

taking the EIP out and get: 

eipPageBias := pageoffset – EIP = CS.base – linPageBase 



As you can see the eipPageBias value is the same for any address inside the 4-Kb page so it 

can be kept in the CPU variable and used to obtain pageOffset from the EIP when needed. 

pageOffset := eipPageBias + EIP 

We can also store in the CPU phyPageBase value and obtain instruction physical address 

when required: 

Instruction physical address := phyPageBase + pageOffset 

So far, so good. But in order to use this trick we need to know when the EIP crossed a 4-Kb 

page in order to recalculate eipPageBias value. But this is very easy to do. The pageOffset 

indicate the distance between linPageBase and current LIP. The distance more than 4K means 

we crossed a page. 

Every time we cross a 4-Kb page the CPU has to call the BX_CPU_C::prefetch(). The 

function checks the EIP for segment limits and canonical, re-calculates eipPageBias, 

translates current linPageBase to phyPageBase and prepares direct pointer to the code page 

for future fetches. 

This is detected using simple comparison: 

eipBiased >= BX_CPU_THIS_PTR eipPageWindowSize 

where eipBiased is calculated from the current RIP: 

 bx_address eipBiased = RIP + BX_CPU_THIS_PTR eipPageBias; 

When CS segment is reloaded for any reason (for example because a far branch was 

executed) the BX_CPU_C::prefetch() call has to be requested explicitly by calling the  

BX_CPU_C::invalidate_prefetch_q() function. The function simply clears 

eipPageWindowSize so next time the eipBiased check will fail and call the 

BX_CPU_C::prefetch() as required. 

The Anatomy of Memory Accesses 

x86: instructions access memory through linear address – segment:offset pair. The offset 

called virtual address: 

Effective address = (BASE + INDEX*SCALE + DISPLACEMENT) MOD ADDRSIZE 

Linear address = (SEGMENT.BASE + Effective Address) MOD OPSIZE 

Segment limit and protection checks have to be done on effective address level, alignment 

and canonical checks on linear address. There are four different paging modes to translate 

linear address into physical and paging also can be disabled. 

Lookup the TLB – TLB keeps physical address and permissions bits. Also keep host pointer 

for direct access if possible. 



Memory access functions are critical for performance so split them as much as possible. 

There is different function for each possible data size. Also split for 32-bit and 64-bit mode. 

32-bit accesses functions check for segment limit and permissions, 64-bit check for canonical. 

Lookup the TLB – TLB keeps physical address and permissions bits. Also keep host pointer 

for direct access if possible. In case of TLB miss or direct access is not possible for some 

reason go slow path – call access_linear (read or write) function. The access_linear correctly 

handles page split and linear to physical address translation. 

Example of read memory access function (yes, look pretty big): 

Bit32u BX_CPU_C::read_virtual_dword_32(unsigned s, Bit32u offset) 

{ 

      Bit32u data; 

      bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s]; 

 

      if (seg->cache.valid & SegAccessROK) { 

          if (offset < (seg->cache.u.segment.limit_scaled-2)) { 

accessOK: 

          Bit32u laddr = get_laddr32(s, offset); 

          unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 3); 

          Bit32u lpf = AlignedAccessLPFOf(laddr, (3 & BX_CPU_THIS_PTR alignment_check_mask)); 

          bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex]; 

          if (tlbEntry->lpf == lpf) { 

              // See if the TLB entry privilege level allows us read access from this CPL 

              if (! (tlbEntry->accessBits & USER_PL)) { // Read this pl OK. 

                  bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr; 

                  Bit32u pageOffset = PAGE_OFFSET(laddr); 

                  Bit32u *hostAddr = (Bit32u*) (hostPageAddr | pageOffset); 

                  ReadHostDWordFromLittleEndian(hostAddr, data); 

                  return data; 

              } 

          } 

          if (BX_CPU_THIS_PTR alignment_check()) { 

              if (laddr & 3) { 

                  BX_ERROR(("read_virtual_dword_32(): #AC misaligned access")); 

                  exception(BX_AC_EXCEPTION, 0); 

              } 

          } 

          access_read_linear(laddr, 4, CPL, BX_READ, (void *) &data); 

          return data; 

    } 

    else { 

         BX_ERROR(("read_virtual_dword_32(): segment limit violation")); 

         exception(int_number(s), 0); 

    } 

} 

 

if (!read_virtual_checks(seg, offset, 4)) 

    exception(int_number(s), 0); 

    goto accessOK; 

} 

The single functional is almost a masterpiece developed by Bochs authors and it demonstrates 

a collection of tricks to make the common case of the memory access as fast as possible: 

 The first if statement checks for (seg->cache.valid & SegAccessROK) != 0 



Every memory access in real, protected or compatibility mode has to check the segment 

descriptor cache for access permissions (including valid bit, present bit and segment 

descriptor type checking). Avoid the check for every memory access by caching the 

AccessROK and AccessWOK in seg->cache.valid bit. In rare cases when cached accessOK 

bit is clear, call for read_virtual_checks. 

 

 Access the Guest-To-Host TLB. Calculate the TLB entry index using the last byte of the 

memory access: 

uint tlbIndex = BX_TLB_INDEX_OF(laddr, 3 /* mem access size = 4 */); 

this way all page-split accesses are guaranteed to fail (miss in TLB lookup). The page 

split accesses require access to two physical pages and they are handled separately in 

access_read_linear code. 

 

 Similarly filter misaligned memory accesses when x86 hardware alignment check is 

enabled. The LPF values (Linear Page Frame) stored in the TLB are always 4K-aligned. 

The AlignedAccessLPFOf macro will keep few LSB when calculating the LF for 

unaligned access and cause TLB miss. 

 

 Check Guest-to-Host TLB accessBits for U/S and R/W permissions and host direct access 

(see Guest-to-Host TLB section).  

 

 The actual memory fast access is only five lines of code: 

                  bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr; 

                  Bit32u pageOffset = PAGE_OFFSET(laddr); 

                  Bit32u *hostAddr = (Bit32u*) (hostPageAddr | pageOffset); 

                  ReadHostDWordFromLittleEndian(hostAddr, data); 

                  return data; 

 

All uncommon scenarios (like page split access, HW alignment check enabled, direct host 

access is not allowed and etc) are handled later, almost everything inside 

access_read_linear/access_write_linear functions. 

 

x86 hardware breakpoints are also checked in access_read_linear/access_write_linear, 

the Guest-To-Host TLB guarantees that there is no direct host access allowed to pages 

with x86 hardware breakpoints enabled. 

 

In long 64-bit mode there are no segment access checks but everything else remains the same. 

There is an assumption that non-canonical access cannot be allocated in the TLB so canonical 

check can also be moved to access_read_linear/access_write_linear. 

Self-modifying code (SMC) detection 

SMC is a pain of the x86 architecture. Every store can potentially modify the instruction flow. 

There is only one relaxation – instruction cannot modify itself. For repeated instruction, once 

decoded it can run forever and even overwrite its own instruction bytes, nothing should 

happen. Once repeat flow was interrupted for any reason (for example by breakpoint or any 

external event) and it must detect the SMC. 



Bochs uses huge data structure called pageWriteStampTable for self-modifying code 

detection. The pageWriteStampTable includes a single Bit32u value for every 4-Kb page in 

the physical address space. The physical address space is: 

 32-bit (4GB) without PSE-36 or PAE 

 36-bit (64GB) with PSE-36 or PAE legacy mode 

 40-bit with long mode enabled 

Each Bit32u value is a bitmap. A bit is set if corresponding 128-byte block of the 4K page 

was decoded to an instruction and cached in the trace cache. Any store to physical memory 

must check the pageWriteStampTable and see if it modifies any instruction bytes. 

In case a SMC is detected: 

1. Invalidate corresponding entries in the trace cache 

2. Clear corresponding bits in bitmap stored in the pageWriteStampTable entry 

3. Set async_event indication BX_ASYNC_EVENT_STOP_TRACE which will 

cause currently executed trace to be stopped and re-fetched. 

Bochs always allocates 1048576 Bit32u entries for pageWriteStampTable which can fully 

cover 32-bit address space. For guests with larger physical address space the 

pageWriteStampTable wraps so single pageWriteStampTable entry might represent multiple 

physical pages. And yes, this is too much (pageWriteStampTable uses 4Mb of host RAM) 

because most of the emulation targets don't have so much physical memory. But I'd prefer to 

have more memory allocated than have an extra run-time check for every executed store 

operation. 

Trace Cache 

"Almost all programming can be viewed as an exercise in caching"                                               

-- Terje Mathisen 

Decoded instructions form traces. Trace is not allowed to cross 4K boundary and must end 

with any taken branch instruction. Tracing over non-taken branches is not allowed (yet). The 

traces are formed on decode time and cached in the Trace Cache structure. The trace cache is 

physically + mode indexed. The index for trace cache is formed by XOR’ing current 

instruction physical address obtained by:  

bx_phy_address pAddr = BX_CPU_THIS_PTR pAddrPage + eipBiased 

and current execution mode (fetchModeMask) of the emulated CPU. The fetchModeMask is 

currently 4-bit wide and includes the following fields: 

0 CS.D_B (16/32-bit mode switch) 

1 CS.L (64-bit mode switch) 

2 SSE OK (allowed to execute SSE instructions) 
SSE instructions #UD if CR0.TS=1, CR0.EM=1 or CR4.OSFXSR=0 

3 AVX OK (allowed to execute AVX instructions) 
AVX instructions #UD if CR0.TS=1, CR4.OSXSAVE=0, AVX is disabled in XCR0 or not in 
protected mode. 

 



Thus the same opcode might be decoded to completely different Bochs handler depending on 

current CPU mode. The fetchModeMask has to be re-calculated every time the CPU mode is 

changed, CS segment is reloaded when CR0, CR4 or XCR0 is modified. 

The trace cache is organized as Direct Mapped array of 64K entries. Every entry in the trace 

cache holds a sequence of instructions without branches with maximum length 32 

instructions. Storing all these instructions directly in the trace cache entries would require 

huge amount of host memory, enough to hold 2M of instructions. This is would be enormous 

waste of space because average trace length hardly exceeds 5 instructions. In order to solve 

that problem the trace cache manages its own memory pool of bxInstruction_c which is large 

enough but still significantly smaller than 2M of instructions (currently memory pool is 

configured to hold 384K of instructions). Instead of storing a whole 32 instructions trace only 

a pointer to the memory pool location is stored in the trace cache entry. When the memory 

pool becomes full the trace cache simply invalidated. 

In order to attack aliasing issues in the direct mapped cache, the trace cache includes also a 

victim cache of 8 entries. Every replaced trace pointer is saved in the victim cache and every 

trace miss first looks up the victim cache before starting to fetch and decode instructions, 

which is much heavier task. 

Trace Cache and Handlers Chaining 

The handlers chaining optimization was presented in the 4th AMAS-BT workshop 

(http://amas-bt.cs.virginia.edu/program-2011.htm) during ISCA-38 in San Jose, California by 

Jens Troeger and Darek Mihocka in the paper “Fast Microcode Interpretation with 

Transactional Commit/Abort”. 

Bochs adapted the handlers chaining algorithm since release Bochs 2.5. 

In the naïve interpreter implementation all handler functions are called from single place 

(usually from the main interpretation cpu_loop) through indirect function call. In this case the 

indirect call would have many different targets and as result become very hard to predict even 

for modern processors with sophisticated branch prediction hardware. The easiest way to help 

the branch prediction is to spreading the indirect calls branches over many call sites. This 

makes each call site much more predictable and also gives more information to the host’s 

branch predictor. 

With handlers chaining optimization each handler computes a pointer to the next handler to 

execute (by singly incrementing the bxInstruction_c* poiner using pointer arithmetic). Then 

the next handler is called directly from the current instruction handler.  

Instructions that must end trace have two options: 

- Compute a pointer to a next instruction (by lookup up or even fetch a next trace) and 

call the next trace first instruction handler directly. 

- Return to the main cpu_loop. 

Current Bochs implementation simply returns to the main CPU loop. Bochs is designed to be 

portable and therefore cannot rely on host compiler to optimize call stack. We must return to 

the main cpu_loop eventually because the host stack growth caused by endless handlers 

http://amas-bt.cs.virginia.edu/program-2011.htm
http://amas-bt.cs.virginia.edu/program-2011.htm


chaining cannot continue forever. Also Bochs increments the system timers after each trace 

(wish list: timer is still not decoupled from instructions execution). 

Typical instruction handler 

There are different kinds of handlers. The handlers that must end trace and return to the main 

cpu_loop behave a little different of the others. 

Typical handler looks like: 

BX_INSF_TYPE BX_CPU_C::HANDLER_NAME (bxInstruction_c *i) 

{ 

    /* handler code */ 

    BX_NEXT_INSTR(i); 

} 

 

The handler that ends a trace looks very similar: 

 
BX_INSF_TYPE BX_CPU_C::HANDLER_NAME (bxInstruction_c *i) 

{ 

    /* handler code */ 

    BX_NEXT_TRACE(i); 

} 

 

All the magic is in macros. Ignore BX_INSF_TYPE for a moment, it is currently 

void, the macro was created in preparation for case when a handler would like to 

return a value.  

 

Let’s look closer to the BX_NEXT_INSTR and BX_NEXT_TRACE macros. 

 

Things that are done after every instruction: 

- Commit the instruction by advancing the prev_rip variable. 

- Call for instrumentation callbacks if required (another macro). 

- Increment emulated instructions counter (icount). 

- Check for async events (also takes care for self and cross modifying code). 

 

The BX_NEXT_TRACE ends here and transfers control back to the caller and all the 

way back to heart of cpu_loop. The BX_NEXT_INSTR calls for next instruction 

directly. 

Lazy flags handling 

X86 has 6 arithmetic flags (OSZAPC for Overflow, Sign, Zero, Aux, Parity and Carry). 

Almost every logical and arithmetic instruction (such as ADD, CMP, MUL, SHL, etc.) 

updates these flags but fewer instructions read these flags, and usually only one or two of the 

flags. Calculating the exact bit values of these 6 flags for every instruction which generates 

them can be very complicated and expensive; and wasteful if the flags are not needed.  

“Lazy flags” computation is a technique of storing information about the last instruction that 

modified the arithmetic flags in a way that permits any specific flag to be determined later.  It 



is relatively inexpensive to store such information compared to actually deriving the flags 

completely. 

Earlier Bochs versions stored 4 values for arithmetic operations (src1, src2, dest and opcode) 

and 2 values for logic operations (when src1 and src2 are not required) to describe the flags. 

The flags were computed using giant switch statement which went over possible opcodes that 

modify flags. In effect, the instruction which generates the arithmetic flags was replayed.  

This was expensive due to the fact that several flow controls were required to call the helper 

function and dispatch the switch statement. 

The latest Bochs implementation is much more optimal.  It uses the insight that the 6 

arithmetic flags are derived in one of two ways: 

1. Zero, Sign, and Parify flags (ZF, SF, PF) are based simply on the result of an 

operation.  ZF is set if the result is zero, cleared otherwise.  SF is set based on the 

high bit of the result, which is the sign flag of a signed integer.  PF is the even parity 

of the low 8 bits of the result.  These 3 flags can be derived without replaying the 

instruction by simply recording the last result of an operation. 

2. Carry, Overflow, and Aux (CF, OF, AF) are all based on the carry-out value of 

specific bits.  CF is the carry-out value of the high bit of the result, which for a 32-bit 

integer operation is bit 31.  OF is the XOR of the carry-out of the two high bits 

(which for a 32-bit integer operation are bits 31 and 30).  AF is the carry-out of the 

low nibble, bit 3.  These 3 flags can be derived without replaying the instruction if the 

carry-out vector is stored. 

One can therefore avoid the helper function and large switch statement to replay an 

instruction by recording only two values – the result of an arithmetic or logical operation, and 

the carry-out bits from bit position 31, 30, and 3 (or 63, 62, and 3 for 64-bit operations). 

This approach reduces the lazy flags state from 4 values to 2 values, and avoids unnecessary 

flow control, thus reducing branch mispredictions.  The lazy flags in Bochs are encoded in 

two variables – result and auxbits. The result variable always holds the sign-extended result 

of the last logical or arithmetic operation.  The auxbits variable holds the three carry-out bits 

used to derive CF, OF, and AF, as well as some additional bits. 

The lazy flags layout for a 32-bit guest is shown: 

31 30 29..16 15..8 7..4 3 2 1 0

SF

auxbits CF PO x PDB x AF x x SFD

result
s ign-extended last result derives  Zero Flag

Pari ty Flag byte

 

Legend: 
x = don't care. 

SF = Sign Flag bit from last result. 

SFD = Sign Flag Delta bit, the true Sign Flag returned is SF XOR SFD. 

PDB = Parity Delta Byte, the true PF returned is derived from the parity of Parity Flag Byte XOR Parity Delta Byte. 

PO = Partial Overflow. This is the carry-out of bit 30. Overflow Flag is derived from CF XOR PO. 

Ideally, all logical and arithmetic operations would always update all 6 flags, and no 

instruction would ever produce an inconsistent state (such as ZF=1 and SF=1 indicating that a 

result was both zero and negative at the same time!).  However, instructions such as POPF 



and SAHF can in fact produce such states.  To handle this, additional bits are stored in the 

auxbits variable which are combined with bits in the result variable to derive the SF and PF. 

A key optimization is to make the ZF and CF easiest to extract, since traces of real-world 

Windows and Linux code has shown that almost 90% of all EFLAGS reads access the ZF and 

most of the rest access the CF.  It is permitted to have PF SF OF and AF derivation be more 

complex, since those are much more rarely read. 

When a logical instruction sets the lazy flags state, this requires only two instructions: one 

two store the result into the result variable, and one to store zero into auxbits variable.  This is 

due to the fact that most logical instructions such as AND, OR, XOR, TEST are defined to 

always clear AF CF OF.  Arithmetic instructions generate the carry-out vector by using either 

the ADD_COUT_VEC or SUB_COUT_VEC macros in lazy_flags.h which can produce the 

carry-out vector in at most 5 logical operations.  This compiles into very efficient code that 

has no branches. 

Instructions such as POPF and SAHF and some shift and rotate instructions which can set 

arbitrary EFLAGS state must manipulate those extra bits in auxbits such that PF and SF are 

derived correctly.  Whenever the SF state needs to be set opposite to the high bit in result 

variable, the SFD (“sign flag delta”) bit in auxbits is set.  Bochs will derive the true Sign Flag 

based on result.SF XOR auxbits.SFD. Similarly, the parity bits can be overridden the same 

way, allowing the Parify Flag to be set independently of the last result. 

Unlike older Bochs versions new Bochs OSZAPC flags are always lazy. This means that the 

architectural EFLAGS register in the CPU never have the most updated copy of the flags and 

they have to be computed on demand. This approach saves an extra check that older Bochs 

versions had to do to determine if a particular flag is up to date in EFLAGS register or lazy 

which further reduces branch mispredictions. 

Repeat speedups 

TBD 

Things I lied about 

extend down segments, x86 hardware debugger, temporary disabling of interrupts (after SS 

changes) ;; might have to go below the following section 



Ideas for future 

Squish out flags handling 

BX_NEED_FLAGS, BX_SETS_FLAGS 

How to be lazy with addresses 

only retranslate seg:ofs -> linear -> physical when strictly necessary 

combine segment limits with TLB pages 

A bit that says if everything is ok or the address has to be reevaluated 


